Lua Scripting and AI Programming…The Perfect Match?

Ryan Thorlakson – DigiPen Institute of Technology

rthorlak@digipen.edu

Brenton Anderson – DigiPen Institute of Technology

banderso@digipen.edu

Overview

The purpose of this paper is to research the use of the scripting language Lua to implement AI behaviors. To do this, we created a simple AI simulation. A shell program created in C++ handled all of the user input and graphical display, while all logic, AI behaviors, objects and the world model were described and coded in Lua script.

We decided to model a single AI agent that implemented A* pathfinding and a subsumption architecture to test the feasibility, performance and use of coding such techniques in Lua script.

Our agent had three needs that it needed to fulfill: hunger, thirst and rest. Each of these needs increased at different rates as time passed. When the agent’s behavior dictated it needed to lower a certain need, it would pathfind to a location where it could satisfy that need (either a food source, water source or sleep source). The user could input food, water, caffeine and walls into the environment at any time and the agent would react to its new environment accordingly.

Through implementing our AI agent in Lua scripts, we were able to gain a better understanding of the applicability of Lua scripts to AI programming.
The Lua Scripting Language

Lua is a lightweight scripting language, meaning it attempts to minimize size and memory usage. Like most scripting languages, it lends itself to rapid application development since it does not require compilation. Changes to a Lua script are instantly ready to run. This makes Lua scripts great for use as configuration files and for functions that are constantly being changed and tweaked.

Lua is a nice break for programmers who are used to C/C++. Lua tracks references to objects, and can periodically garbage collect when no references to objects remain to free up the memory. No messy and error prone delete calls exist. To delete an object, you simply remove all references to the object.

In Lua, variables do not need to be declared. Variables simply spring into existence the first time you assign them. All variables by default contain the value "nil", meaning not used. Variables are weakly typed; any type can be assigned to any variable. A variable can reference a number at one point, then later reference a string, table, or even a function. Function names are variables just like any other variable. Functions carry no extra type information except that they are a function. A Lua function can accept an arbitrary number of arguments, and also return an arbitrary number of results. If too many arguments are passed, the extras are ignored. If too few are passed, the remainder are treated as nil.

Collections of objects are all implemented as a single type of object: the table. Tables can represent arrays, structures, dictionaries, or any combination. Lua has functions to iterate over just the values with integer keys (array values), so tables that represent arrays can also have fields to describe the array such as a name, the size, or other data.

All of these nice features make programming in Lua a relaxing experience. However, all of the freedom can lead to mistakes. The scripts are not compiled, and there is only weak type information, so it's not as easy to catch type mistakes as in C/C++. Since the script is not compiled, one must run the script in a program and read the error message to find a mistake. If a variable is indexed as a table but actually represents a number, the script will produce an error.

A* in Lua

A* is a very common pathfinding algorithm in game programming. We set out to determine how suitable the Lua scripting language is for programming the A* algorithm. In our project, the agent uses a subsumption architecture to decide what desire he will try to fill. This is discussed in detail in the next section. The lowest level of the subsumption architecture is responsible for getting the agent from his current position to the position of the item that will satisfy his greatest desire. This lowest level of the subsumption architecture is the navigation system.

The navigation system takes the agent's current position and the goal position handed down from a higher level. It then executes on the A* algorithm to construct the shortest path from the current position to the goal. Finally, it instructs the player to move according to the first step in this path. This process is repeated on every tile that the agent passes through.

In A* pathfinding, every tile on the map is a "node". Two lists are maintained for the algorithm: an "open" list and a "closed" list. The open list represents nodes on the edge of the search that could potentially lead down the shortest path. The closed list represents nodes on the interior of the search that have been processed.

The algorithm begins by placing the starting node on the open list. Then the loop begins. The first action is to find the node on the open list with the lowest "score". The score is defined as the distance traveled so far to arrive at that node plus the distance left to get to the goal (ignoring walls). This chosen node is placed on the closed list, and the four surrounding nodes are added to the open list (unless the node is a wall, or already on the closed list). If the node was already on the open list but the score coming from this direction is lower, the open list node will be replaced using the score from this direction. The process is repeated until the goal node is placed on the closed list.

As this algorithm goes on, it must maintain which direction the agent must come from to get to each node. Once the goal is placed on the closed list, the algorithm steps backwards through the closed list, always going in the opposite direction that it took to get to each node, until arriving back at the agent's original position. At each step, the path is recorded so a path is built from the start to the goal.

In Lua, we implemented the world as a table of tables. The higher level table represented rows, and the lower level represented the individual tiles along the column. We could easily index into this world by treating it as a 2 dimensional array. The open and closed lists were treated as tables of nodes. To locate nodes on the open or closed list, we iterated through the table and checked the x and y position of the node until it was found. Flow control was very similar to C/C++.

It was very quick to code the basic A* algorithm in Lua. However, a few minor mistakes were made. It was more difficult to debug these mistakes than it would have been in C++ due to the opennes and weakly typed variables of Lua. One mistake was a spelling mistake, but since variables are not declared in Lua, the program ran without complaining and simply generated a new variable for the wrong spelling. This was difficult to locate. However, testing changes was very quick since Lua is not compiled. Lua is a great way to program A*, but one must take extra care when typing variables names.

Subsumption Architecture in Lua

The agent's behavior was dictated by three desires that were constantly increasing at different rates. Each need was represented as a percentage from 0% to 100% of that need. The needs were hunger, thirst and sleep. The agent's environment was grid based and consisted of impassable walls, food items, water items and caffeine items. There could only be one item in a grid at one time, so you couldn't have a food and a water item in the same grid. The agent could exist in the same grid as an item though, and actually, the agent needed to be in the same grid as an item in order to use it. In addition to food, water and caffeine items, there were also three static items that we called the fridge, the sink and the bed. These static items would not be consumed by the agent, and instead, provided to the agent a reduction of one of his needs over time granted that the agent stayed in the same grid as the static item.

For instance, if the agent was thirsty, he could seek out a water item and use it, or he could seek out the static sink and stay there until his thirst dropped low enough until another desire took higher precedence. The food, water, and caffeine items could be used by the agent to replenish a set amount of need for either of the hunger, thirst and sleep. Once they were used, they are gone from the world. The user, however, could at anytime input into the environment a food item, a water item, a caffeine item or a wall and the agent would react accordingly.

The following were the different behaviors available to the agent:

A) Seek nearest static source to reduce any need.

B) Seek nearest food item or fridge to reduce hunger.

C) Seek nearest water item or sink to reduce thirst.

D) Seek nearest caffeine item or bed to reduce tiredness.

The following rules were used in determining which behavior to use:

By default, implement behavior A).

When any need comes above 50%, use the appropriate behavior to reduce that
need until that need has reached below 15%.

If any other need rises above the currently acted on need by 25% and that

need is above 50%, then switch to a different behavior that will satisfy

the new need.

If need is satisfied below 15% and no other need is above 50%, return to

behavior A).

Each of these behaviors would use the A* pathfinding to find the closet target (the closest target by closest path), and then start walking to it. Once the agent arrived at its target location, it would use the item, or in the case of a static item, remain there until the acted upon desire went below 15%.

In terms of implementing this scheme in Lua, it was rather straight forward. We could limit our agent to being in any of the four different states we outlined at any one time. Every time the agent passed into a new tile, the desire levels were checked to determine if a state change was needed. The A* methods we created were then used to see which tile we should move into next in order to head towards the closest item that satisfied the agent's current state. At this point, the agent would move to the next step and then start the whole process over again of observing his environment, finding the closest item and moving towards it.

At the lowest level of this subsumption implementation is the pathfinding, which includes wall avoidance and a means of providing a path to follow from the agent's current position to a target. Above this are the four behaviors that determine which targets to select. While one of these four top level behaviors is active, it quells the other three.

Interfacing Lua with C++

One major hurdle we encountered at the beginning of our project was hooking up our Lua script with our C++ OpenGL Utility Library (GLUT) application for displaying the location of the agent and world objects. This turned out to be quite simple after a bit of setup. Since the API is written in C and we were using C++, we had to extern "C" when including the header file. We implemented a LuaScript class in C++, which took a file name in the constructor. This called the entire Lua file as a function, initializing any global variables and setting up all functions.

To get a global value from Lua, we implemented a member function to get a global number. All numbers are treated the same in Lua (there are no integers), so this function returned a double. The Lua C API maintains a stack for passing variables back and forth to and from the Lua script. The function requested the Lua instance to place the variable with the requested name on the top of the stack. This value was then popped off for use in our program.

To call functions in Lua, we implemented another member function. Since Lua functions can take any number of arguments (it ignores extras), we made this function take the most arguments we would need in any function call, which was 2. It also took the function name. The member function pushed the function name and the two arguments on the Lua stack, and then made a call to execute the function, using the 3rd stack element as the function name and the next 2 as arguments. This is how we called the Update function in Lua, which took the amount of time passed, and the functions to add water, food, caffeine, and walls to the world, which took an x and y location.

Interfacing Lua with C/C++ took some initial work and was slightly complicated due to the special Lua stack, but was mostly painless and we encapsulated it well in our LuaScript class. Check the source on the CD if you would like to use our implementation.

Lua Efficiency

One concern we had when beginning our project was whether or not Lua would be fast enough to keep up with our simulation in real time. Since Lua is not compiled, it can't match the speed of a language built for efficiency such as C/C++. In order to minimize this concern, we used a relatively small twenty by twenty world grid space.

A* is often problematically slow, so many efficiency improvements exist. One example is keeping a grid of nodes instead of maintaining actual lists, where each element in the grid is specified as on the open, closed, or no list. Another possible speed improvement is keeping the open list sorted by score, so the list does not have to be searched for the lowest score every time, the first element can be used. Extreme A* programmers store the open list as a binary heap for extremely fast element adding with sorting.

We implemented the simplest version of A* with no efficiency enhancements. We were surprised to find that even running the full A* algorithm after each step the agent took, no slow down or lag spikes could be noticed. While Lua may be slower than compiled languages, its speed is certainly suitable for simple AI tasks.

Conclusions

We set out to determine how suitable the Lua scripting language could be for implementing a simple AI behavior. Learning Lua was very quick and enjoyable for us and was easier than most languages to learn. While it may be too much to ask a designer to write a full AI algorithm in Lua script, a designer could certainly use it to set values and do simple checks. Programmers should have little trouble writing AI routines in Lua, beyond the occasional misspelled variable name. Working with Lua allows for quick iterative development since it does not require compilation. We were able to get the scripts to do everything we required quite quickly. Additionally, exchanging data between the C/C++ code and the Lua was relatively easy after understanding Lua's stack-based mechanics. The speed of Lua is adequate for moderately complicated AI routines. One might say that Lua scripting and AI programming are the perfect match.

References

[Anonymous05] Anonymous, “Lua Tutorial” available online at

http://lua-users.org/wiki/TutorialDirectory September 2, 2005.

[Ierusalimschy03] Ierusalimschy, Roberto and Henrique de Figueiredo, Luiz and Celes, Waldemar, Lua 5.0 Reference Manual, Tecgraf - Computer Science Department - PUC-Rio, April 3, 2003.

[Murphy00] Murphy, Robin, Introduction to AI Robotics, MIT Press, 2000: pp. 113-122.

[Lester03] Lester, Patrick, “A* Pathfinding for Beginners” available online at

http://www.gamedev.net/reference/articles/article2003.asp October 9, 2003.
